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COMMENT 

On the f-cr spectrum of one-hump maps 

G Ambika and K Babu Joseph 
Department of Physics, Cochin University of Science and Technology, Cochin ti82022, India 

Received 22 April 1988, in final form 3 June 1988 

Abstract. Based on a perturbative procedure developed to solve for the universal parameters 
of one-hump maps, the corresponding fractal dimensions D, and the f - a  spectrum are 
studied. 

Recently a lot of interest has been concentrated on fractal sets which are found to 
exist in a large variety of non-linear systems. In these systems, the long-time stochastic 
motion lies on a complicated manifold in phase space called the strange attractor. 
One-dimensional maps are found to provide a suitable framework modelling most of 
these systems. In this comment we consider maps of the form x,,~ = 1 - A~x, / ' ,  on the 
interval (-1, l ) ,  where A is the control parameter and z is the degeneracy of the critical 
point. The period-doubling cascade of such maps accumulates at A,, where the map 
possesses a 2" orbit. The associated universal behaviour is characterised by the function 
g(x)  which satisfies the functional equation (Feigenbaum 1978, 1979) 

g(x)  = -cupdg(g(x/ a p d )  (1) 
where (Ypd is the universal scaling factor defined for the separation between two adjacent 
fixed points in the period-doubling scenario (Feigenbaum 1980). The iterates of g(x)  
form a nearly self-similar Cantor set, called the Feigenbaum attractor. The nature of 
the self-similarity of such an attractor as well as analytic approximations for the first 
three dimensions Do, D ,  and D2 have been recently studied by Hu (1987). 

This comment is meant to supplement these investigations, but our method is 
significantly different in that an analytic method of solving (1) is used to get g(x) .  
Using this, we derive equations to be solved for the generalised dimensions D,, for 
any value of z. These are used to compute the spectrum of (Y values and their densities 
f ( a )  (Benzi er al 1984, Halsey et al 1986), which provide a complete characterisation 
of the scaling structure of the attractor. 

A perturbative scheme was developed recently to evaluate the universal parameters 
of one-hump maps (Singh 1985, Ambika and Babu Joseph 1986,1988). The function 
g(x)  is first written as a power series in xz  as 

" 
g(x) = 1 + P"lXIn=. 

n = 1  

In the neighbourhood of x = 0, g(x)  is positive for any z and so g(g(x) )  can also be 
expanded into a similar power series: 
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The perturbative method depends on a proper redefinition of the coefficients P,, which 
brings about a reshuffling of the terms leading to accelerated convergence. Thus we 
define 

Pnffid= S n / f f p d / .  (3) 

Using (2a) ,  (2b) and (3) in (1) and equating coefficients of Jx/" '  on both sides, we get 

S m , S m ,  * . . S m ,  
X c L( , - 1 )  8 m I + mz+ ...+ mi, n 

m , a l ,  m 2 = l  ... m * l  Iffpdl 

n = 2 , 3 , 4  , . . . .  (6) 

To solve these coupled non-linear equations, S, are expanded into inverse powers in 
apd as 

S n m  

m=O f f p d  

s 

( 7 )  

Using ( 7 )  in ( 5 )  and ( 6 )  a set of equations result and  these can be solved successively 
for Snm. Then g(x) is given as 

n = l  m=O a p d  

and the scale factor f fpd  is given by (4) 

For any z value, the first few coefficients Snm work out t o  be 

. . . .  - (z  - I )  
S I ,  =- 

Z 2  

( z  - 1 )  S*o = - 
22' 

1 s - _ -  
10 - 

Z 

Then equation (9) is 

The series in the brackets is found to be asymptotic in nature and can be replaced by 
its Pad6 approximant (Ambika and Valsamma 1988). Here considering the lowest 
approximation, we use the [1/1] approximant to get 
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Using the coefficients in ( lo) ,  (8) gives 

The attractor of one-hump maps consists of a set of points ( x , ) ~  generated by the 
map 

% + I  = g ( x , )  (14) 

starting from x o =  0. The whole set lies in the interval ( - - 1 / a p d ,  1) but can be rescaled 
(Hu 1987) such that the new set ( x : ) ~  lies in the interval (0, 1 ) .  The attractor can be 
divided into subsets sl ,  s 2 ,  s3, . . . , each having the same structure but rescaled by 
different factors l/s, where 

1 
I ’  

s. = 
X t - X z J - 1  

The iterates after rescaling and re-ordering are 

1 

apd 

x;=o x;=- 

The corresponding subsets are 

The generalised dimensions D, can be computed by defining a partition function 
r as (Halsey and Jensen 1986, Grassberger 1985) 

For large N, I‘ is of order unity and 7 is related to the generalised dimensions through 
the relation 

(18) 

Here I ,  = l / s ,  and all the p are equal and hence when we consider R subsets of the 
attractor, ( 17) gives 

7 = ( 4 - 1 ) D,. 

This leads to a transcendental equation for 7 and D, is then computed using (18 )  for 
each q. 

The singularities a are defined as (Halsey et a1 1986) 

a7 

aq 
c y = -  

and the corresponding fractal dimension f (  a ) ,  obtained as 

f ( a )  = a q  - 7. 
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For the two subsets considered in (16), (19) gives 

aid+a; I+-  =29. ( 
This equation is to be solved to get T and hence 0, for any q except q = 1. For this 
special limiting case we use the expressions derived by Hu (1987) and get 

( z +  1) In apd- In ( 1 +- :;:d))]-” 

For a range of z values from 1.2 to 10, we compute (Ypd using (12). The dimensions 
D, calculated using (22) and (23) are shown in figure 1 for a few typical q values. 
We find that for any q, 0, varies continuously with z. Moreover as z increases the 
0, get spread out over a wide range and the spread is asymmetrical about Do. However, 
for large q values, the 0, values get closer and closer. In particular Do increases with 
z and reaches almost saturation for large z. For positive q values, D9 increases first, 
reaches a maximum and then decreases, while for negative q values, D, is found to 
increase monotonically with z. 

z 

Figure 1. Dependence of the fractal dimensions D, on the degeneracy of the critical point 
of the map. 

Using (20) and (21), we calculate a and f ( a )  and the f against a curve for a few 
specific z values are shown in figure 2. One interesting observation is that the f and 
a values crowd near the D,, regions for large z, while they are distributed uniformly 
over the curve for small z values. Moreover, the values near the D,, region are not 
much different for different z while they differ considerably near the D-, region. This 
points to the fact that the difference in the corresponding attractors lies mainly around 
their most rarefied regions. 
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fla) 

Figure 2. The f against a curve for a few typical z values: (....) z = 10, (- . -) z = 4, 
(- - -) z = 3 and (-) z = 1.2. 

For quadratic maps, we have 

In 2 D-, = - 
In apd 

and 

(Halsey et a1 1986). In general we may define D,, for arbitrary z as D+,= In 2/1n a i d .  

The values of D,, taken from the endpoints of the f-a curves and those calculated 
using the above expressions are given in table 1. We find the agreement is remarkable 
for D-, while it is not so good for D+,. This is because for large positive q values, 
(22) could be solved only with less accuracy. We note that D+, and D-,  values show 
the limiting behaviour to be expected from figure 1. 

In conclusion, we mention that our method is mainly analytical in nature, even 
though some computations are unavoidable in the end. We could extend the earlier 
work on the fractal dimensions of one-hump maps by providing all the relevant D, 
values for a range of z values. The f - a  spectrum has been drawn for a few typical z 

Table 1. Calculated values and values from graph for D,, for the z values shown in figure 2. 

D + m  D-m 

BY From BY From 
Z calculation graph calculation graph 

1.2 0.342 880 0.341 0.41 1 460 0.41 87 
3 0.348 578 0.360 1.045 640 1.040 
4 0.325 018 0.3467 1.300 072 1.2933 

10 0.254 714 0.267 2.547 140 2.547 
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values. We note that, even though the f - a  spectrum for z = 2  has been studied 
numerically (Halsey and  Jensen 1986), that for other z values has not been discussed 
so far. 

Our aim in this comment has been to indicate the main trend of our method and  
so we work with the crudest approximation. But even then, the agreement with available 
numerical values is quite good. The method has the advantage that it is straightforward 
to improve the results by including more terms in the series in (12) and (13) and 
considering higher-order PadC approximants (Ambika and Valsamma 1988). It is also 
possible to consider more subsets of the attractor in (19) leading to greater accuracy. 

One of us (GA) acknowledges the financial support of the University Grants Com- 
mission. 
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